Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2017

Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV\textendash200 keV in resonant interactions with a single VLF rising tone on a time scale of 10\textendash100 ms.

Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023429

nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave-particle interactions

2016

Van Allen Probes Observations of Prompt MeV Radiation Belt Electron Acceleration in Non-Linear Interactions with VLF Chorus

Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of non-linear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy 100s keV - 3 MeV can be accelerated by 50 keV - 200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 msec.

Foster, J.; Erickson, P.; Omura, Y.; Baker, D.; Kletzing, C.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023429

nonlinear acceleration; Radiation belt; Van Allen Probes; VLF chorus; wave particle interactions



  1